Appendix

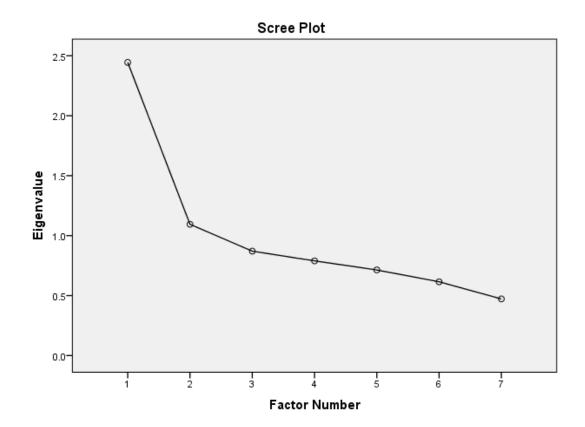

Factor analysis of prosocial behavior items with promax rotation and eigenvalues of 1.0 or greater

Table 1

Variance explained and eigenvalues from factor analysis

							Rotation Sums of
		Initial Eigenva	alues	Extraction	n Sums of Squa	Squared Loadings	
		% of	Cumulative		% of	Cumulative	
Factor	Total	Variance	%	Total	Variance	%	Total
1	2.445	34.922	34.922	1.852	26.458	26.458	1.627
2	1.094	15.635	50.557	.368	5.255	31.713	1.606
3	.871	12.436	62.994				
4	.790	11.280	74.273				
5	.714	10.196	84.469				
6	.615	8.788	93.256				
7	.472	6.744	100.000				

Figure 1
Scree plot of factor analysis

RESPONDING TO NATURAL DISASTERS - Appendix

Table 2
Pattern matrix of the factor analysis

	Fa	ctor
	1	2
How often do you give away part of your spare change to help charity	.765	159
organizations?		
How often do you give money to people begging in the streets?	.597	082
How often do you give money for national collections?	.418	.246
How often do you give money to help when disasters occur (e.g., earthquakes,	.104	.719
floods, etc.)?		
Made money donations in favour of the victims	026	470
Made food or cloth donations	.012	442
Participated directly in reconstruction activities	.149	291

RESPONDING TO NATURAL DISASTERS - Appendix

Post-earthquake regression analyses, Santiago-only sample

Table 3

Regression models examining how national identity and prosocial values related to prosocial behavior after the earthquake

	Ge	neral mo	ney	Dona	ting mon	ney when	Dor	nating aft	ter the	He	lping w	ith the	
		donation	1	di	isasters o	occur	1	earthqua	ke	reconstruction			
Predictor	b	SE b	β	b	SE b	β	b	SE b	β	b	SE b	Exp(b)	
National identity	.20	.04	.15**	.35	.06	.18**	.06	.02	.11**	05	.15	0.95	
Prosocial values	.28	.04	.24**	.20	.05	.12**	.06	.01	.14**	.47	.15	1.59**	
$F(df)/\chi^2(df)$	51.4	8 (2, 104	15)**	28.	28.54 (2, 1045)**			20.02 (2, 1045)			10.21 (2)**		
Adjusted R ² /	.09			0.5			0.4			02			
Nagelkerke R²			.05			.04			.02				

Note. $^{\dagger}p$ < .10. $^{*}p$ < .05. $^{**}p$ < .01. SE = standard error. The model examining helping with the reconstruction was a logistic regression model.

Table 4

Regression models examining how helping motivations related to prosocial behavior after the earthquake

	General money			Donat	ing mor	ney when	Dor	nating aft	er the	Helping with the			
		donation		di	sasters o	occur	(earthqual	кe	reconstruction			
Predictor	b	SE b	β	b	SE b	β	b	SE b	β	b	SE b	Exp(b)	
Career	.08	.15	.11	.13	.25	.10	02	.07	05	10	.51	0.91	
Religious	.14	.09	.24	09	.15	10	03	.04	11	37	.28	0.69	
Self-enhancement	.12	.15	.14	.29	.25	.21	.09	.07	.24	.56	.57	1.75	
Self-protective	.01	.13	.02	02	.23	01	.03	.06	.07	21	.41	0.81	
Social	11	.12	15	.19	.21	.15	.02	.06	.06	05	.42	0.96	
$F(df)/\chi^2(df)$	1	.76 (5, 66	5)		1.81 (5,	66)	().77 (5, 6	6)		3.12 (5	5)	
Adjusted R ² /		0.5			0.5			02			07		
Nagelkerke R ²	.05		.05		02			.07					

Note. $^{\dagger}p$ < .10. $^{*}p$ < .05. $^{**}p$ < .01. SE = standard error. The model examining helping with the reconstruction was a logistic regression model.

Additional post-earthquake physical proximity analyses

Table 5

Regression models examining how physical distance from the earthquake, coded as kilometers from the earthquake epicenter, related to national identity and prosocial values, controlling for socioeconomic status

	Nat	ional idei	ntity	Prosocial values				
Predictor	b	SE b	β	b	SE b	β		
Distance (km)	.000	.000	03	.000	.000	04		
$F(df)/\chi^2(df)$	5.14	4 (2, 1378	8)**	1.	61 (2, 13	380)		
Adjusted R ² / Nagelkerke R ²		.01		.001				

Note. $^{\dagger}p$ < .10. $^{*}p$ < .05. $^{**}p$ < .01. km = kilometers. SE = standard error.

Table 6

Regression models examining how physical distance from the earthquake, coded as kilometers from the earthquake epicenter, related to helping motivations, controlling for socioeconomic status

	Career motivations		Religious motivations			Self-enhancement			Self-protective			Social motivations			
	Care	et mouva	tions	Keng	ious iliot	ivations	motivations			motivations			Social motivations		
Predictor	b	SE b	β	b	SE b	β	b	SE b	β	b	SE b	β	b	SE b	β
Distance (km)	.000	.000	.01	.000	.001	.04	.000	.000	.05	.000	.000	07	.000	.000	07
$F(df)/\chi^2(df)$	0	.02 (2, 10	1)	(0.26 (2, 1	01)		0.31 (2,	101)	0	.43 (2, 10	00)	0.3	8 (2, 100))**
Adjusted R ² / Nagelkerke R ²		02			02			01			01			01	

Note. $^{\dagger}p < .10. *p < .05. **p < .01. SE = standard error.$

Table 7

Regression models examining how physical distance from the earthquake, coded as kilometers from the earthquake epicenter, related to prosocial behavior, controlling for socioeconomic status

	Ge	neral mor	ney	Donat	ing mor	ney when	Dor	nating aft	er the	Hel	ping wi	ith the	
		donation		di	disasters occur			earthqual	кe	reconstruction			
Predictor	b	SE b	β	b	SE b	β	b	SE b	β	b	SE b	Exp(b)	
Distance	.000	.000	.03	.000	.000	.07*	.000	.000	.06*	001	.001	1.00	
$F(df)/\chi^2(df)$	14.6	50 (2, 138	6)**	37	37.56 (2, 1385)**		30.17 (2, 1386)**			25.67 (2)**			
Adjusted R ² /		.02			.05			.04			.04		
Nagelkerke R ²		.02			.03			.04			.04		

Note. $^{\dagger}p$ < .10. $^{*}p$ < .05. $^{**}p$ < .01. SE = standard error. The model examining helping with the reconstruction was a logistic regression model.

Table 8

Analysis of covariance models examining how national identity, prosocial values, helping motivations, and prosocial behaviors varied according to proximity of the five separate areas to the earthquake, controlling for socioeconomic status; trends by areas fit the trends in Table 5 in the actual paper

	Region $F(df)$	Partial η2
National identity	1.32 (4, 1377)†	.007
Prosocial values	3.55 (4, 1377)**	.013
Helping motivation: career	1.21 (4, 103)	.045
Helping motivation: religion	0.79 (4, 103)	.030
Helping motivation: self-esteem	0.33 (4, 103)	.013
Helping motivation: self-protective	1.22 (4, 102)	.046
Helping motivation: social	0.48 (4, 102)	.019
General money donation	3.20 (4, 1383)*	.009
Donating money when disasters occur	2.99 (4, 1382)*	.009
Donating after the earthquake	1.87 (4, 1383)	.005
Helping with the reconstruction	4.10 (4, 1383)**	.012

Note. $^{\dagger}p$ < .10. $^{*}p$ < .05. $^{**}p$ < .01. Standard error and N in parentheses. Subscripts indicate significant differences when there is an overall significant F.